If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6b^2+26b-20=0
a = 6; b = 26; c = -20;
Δ = b2-4ac
Δ = 262-4·6·(-20)
Δ = 1156
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1156}=34$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(26)-34}{2*6}=\frac{-60}{12} =-5 $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(26)+34}{2*6}=\frac{8}{12} =2/3 $
| (p/8)-7=-6 | | u-5.3=4.9 | | 4x+9=-2-15 | | 2x–9=x–9 | | 9=9+8g | | w+2.81=6.85 | | 13=3v+9 | | 32=6-2z | | 1/2(4X-10)=x-11 | | 0.20(y-1)+0.14y=0.08y-1.5 | | 12=2g-6 | | 20=10*4^x | | 14=2h+4 | | -w/5-2=2 | | 4x+2x+2=3x-7 | | 24-4x=-2 | | 4(0.75x-4)-13=7 | | 8x=3=6x-9 | | 25=2t=5(t+2) | | 4(3/4x-4)-13=7 | | 10b-1=-47 | | 2(3n-4)=5n+13 | | 14^3x-4=1/14 | | 1÷3x=35 | | 10z-68=3z-5 | | 8(4p+5)=8(5p-4) | | 2b+2=98+b | | 2(3x-15)+14x=64 | | 2x+45=9x-32 | | 200+x=11x | | 2x+172=150 | | x-3/5=-2/5 |